Physics III 031

16/11/2016 8.30 am - 11.30 am

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2016

SUBJECT: PHYSICS

PAPER III: PRACTICAL PHYSICS

COMBINATIONS: - PHYSICS-CHEMISTRY-BIOLOGY (PCB)

- PHYSICS-CHEMISTRY-MATHS (PCM)

- MATHS-PHYSICS-GEOGRAPHY (MPG)

- MATHS-PHYSICS-COMPUTER SCIENCE (MPC)

- PHYSICS-ECONOMICS-MATHS (PEM)

DURATION: 1Hour 30minutes

INSTRUCTIONS TO CANDIDATES

- 1. Do not open this question paper until you are told to do so.
- 2. Write your names and index number on the answer booklet as written on your registration form and **DO NOT** write your names and index number on additional answer sheets of paper if provided.
- 3. This paper consists of one compulsory question. (40 marks)
- 4. You may use a non-programmable calculator, geometric set and a 30 cm ruler.
- 5. All answers should be written in the answer booklet provided.
- 6. Use only blue or black pen and pencil.

ANSWER ALL QUESTIONS (40 MARKS)

In this experiment, you will determine the force constant (k) of the spring of a newton meter often called "spring balance" provided.

Apparatus required:

- 1 newton meter
- 1 complete retort stand set
- 1mass hanger of 50 g and 9 masses of 50 g each or 1mass hanger
 of 50 g and 1 mass of 50 g and 4 masses of 100 g each
- 1piece of thread 30 cm long
- a) Set up the apparatus as shown in the figure below by attaching the upper hook of the newton meter on the retort clamp.

b) Record the position P_0 in newtons of the pointer of the newton meter to

ldecimal place when there is no mass hung from it i.e M= 0 g.

(1mark)

c) Suspend a mass hanger M= 50 g from the free end (lower hook) of the newton meter.

- d) Read and record the new position P of the pointer in newtons to 1 decimal place.
- e) Use a ruler of 30 cm or 15 cm long with zero mark opposite to zero mark of the Newton meter to measure in cm to 1 decimal place the distance X that is between P_0 and P.
- f) Repeat the procedures from (c) to (e) for mass values of M=100, 200, 300, 400 and 500 g.
- g) Record your values in a suitable table including values of M, P, $P = P P_0 \text{ and extension } \mathcal{X} \text{ of the spring.} \tag{22 marks}$
- h) Plot a graph of P' (along a vertical axis) against \mathcal{X} (along a horizontal axis). (11marks)
- i) Find the slope S of the graph. (2marks)
- j) From the slope; answer the question i.e. determine the force constant k in N/m.(1mark)
- k) Discuss the result and whether or not it makes sense and with reason indicate if the result is or not accurate. (3marks)

BLANK PAGE